El rol de la minería de América Latina en una sociedad descarbonizada

En la Conferencia de las Naciones Unidas sobre el Cambio Climático 2015 (COP21) se acordó que el incremento de la temperatura media global no debe superar los 2°C respecto a la temperatura de niveles preindustriales. Una manera de alcanzar este objetivo implica la incorporación masiva de las llamadas tecnologías verdes, en especial en la generación de energía eléctrica y en el sector del automóvil. Aunque la fuente de energía de este tipo de tecnologías sea renovable, los materiales que se requieren para su fabricación no lo son. Según investigaciones recientes, algunos de estos materiales van a ser críticos para la implantación de dichas tecnologías y una buena parte de estos minerales se extraen en la actualidad en América Latina. Otras regiones del mundo cuentan con reservas considerables de minerales pero los resultados indican que América Latina y el Caribe tendrán un papel protagónico en una sociedad descarbonizada, lo que implica oportunidades y desafíos para la región calificada como la más desigual del mundo.

La importancia de las materias primas en la transición energética

A finales del 2015 tuvo lugar en París la vigésima primera sesión de la Conferencia de las Partes de la Convención Marco de Naciones Unidas sobre el Cambio Climático (COP21). La conferencia terminó con la adopción del Acuerdo de París que establece a partir del año 2020 un marco global de lucha contra el cambio climático, donde se hace especial hincapié en la transición hacia una economía baja en carbono. Uno de los principales resultados fue acordar evitar que la temperatura media global supere los 2°C respecto a los niveles preindustriales y tratar de reducir las emisiones a medio y largo plazo.¹

¹ Naciones Unidas, FCCC/CP/2015/10/Add.1: Paris Agreement, Naciones Unidas, París, 2016.
Diversas organizaciones como la Agencia Internacional de la Energía,2 el Consejo Mundial de la Energía,3 e incluso Greenpeace4 han publicado estudios planteando distintos escenarios hasta el 2050 y múltiples alternativas para no sobrepasar el objetivo establecido por la COP21. El común denominador en todos estos escenarios es la incorporación masiva de tecnologías renovables para la generación de energía eléctrica como la energía fotovoltaica, termosolar o energía eólica, entre otros. En el caso del transporte, cada vez adquiere más importancia la sustitución de vehículos convencionales de gasolina y gasoil por vehículos eléctricos y otras formas de transporte sostenibles.5

En todos estos escenarios se tiene en cuenta la disminución de emisiones que dichos cambios conllevarían, pero un aspecto escasamente tratado es la demanda de materiales que requerirán estas tecnologías. En la Figura 1 se pueden ver los elementos más representativos que son necesarios para la fabricación de alguna de estas tecnologías verdes. Por ejemplo, se estima que el Toyota Prius, el más popular entre los vehículos híbridos, necesita 1 kg de neodimio, además las baterías requieren entre 10 y 15 kg de lantano,6 ambos metales considerados raros debido a su escasez. Si tenemos en cuenta que la producción global de tierras raras, grupo de la tabla periódica dentro del cual se encuentran ambos elementos, en el año 2017 fue de tan solo de 130.000 toneladas, podemos entender que son escasas si lo comparamos con las más de 19 millones de toneladas de cobre que se extrajeron ese mismo año.7 En la misma Figura 1 se puede ver que son precisamente los vehículos eléctricos los que mayor cantidad de elementos requieren si se comparan con los aerogeneradores, paneles y concentradores solares.

2 IEA, Energy Technology Perspectives: Scenarios & Strategies To 2050, International Energy Agency Publications, 2010(a).
3 Consejo Mundial de la Energía, World Energy Trilemma 2016 Defining Measures To Accelerate the Energy Transition, 2016.
6 W.J. Rankin, Minerals, Metals and Sustainability, CSIRO, Collingwood, Australia, 2011.
Existen diversos estudios de distintos grupos de investigación internacionales que han abordado el problema de suministro de materiales centrándose principalmente en aspectos geopolíticos y económicos que podrían poner en riesgo la sostenibilidad de las economías mundiales. Además hay también estudios llevados a cabo por organizaciones y entidades como la Comisión Europea y distintos servicios geológicos de países europeos, incluyendo el de EEUU. Uno de los más usados a gran escala, y empleado como referencia por muchos, es el de la Comisión Europea, que ya en el año 2008 empezó a solicitar informes sobre el empleo de distintos materiales para poder establecer una estrategia y acciones que los estados miembros debían llevar a cabo para poder garantizar el suministro de materias primas. Posteriormente en el año 2010 publicó un informe en el que se identificaban un total de 14 elementos como críticos para la Unión Europea; dicha lista fue ampliada en informes sucesivos en el año 2014 y más recientemente en el 2017. En este último informe, un total de 27 minerales fueron identificados como estratégicos para el desarrollo de las nuevas tecnologías.

tecnologías en la región. Además, se considera que tienen también riesgo de suministro principalmente por estar su producción concentrada en unos pocos países, en algunos casos políticamente inestables.

Más allá de los riesgos geopolíticos, hay otros factores que se pueden, y deben, tener en cuenta para analizar la criticidad de los minerales. Entre ellos, los riesgos asociados a la posible escasez geológica de los materiales.

Llama la atención que, existiendo más informes similares en otros países de Asia, Europa o EEUU, no haya ningún informe similar en ningún país de América Latina, y más aún teniendo en cuenta que en la región se encuentran algunos de los principales productores de varios minerales.

Más allá de los riesgos geopolíticos, hay otros factores que se pueden, y deben, tener en cuenta para analizar la criticidad de los minerales. Entre ellos, los riesgos asociados a la posible escasez geológica de los materiales. Así, con el objetivo de examinar si las reservas conocidas de ciertos minerales podrían satisfacer la demanda creciente para las nuevas tecnologías, se ha llevado a cabo un estudio comparativo entre la demanda acumulada de cada elemento desde 2016 hasta 2050 con las reservas hasta ahora reportadas a nivel mundial, siendo las reservas la cantidad de material que podría ser extraído con la tecnología y las condiciones económicas actuales.

Una vez sabemos cuál va a ser la demanda de materiales para esta transición energética, se puede estudiar con más detalle el papel que tendrá América Latina y el Caribe como suministrador de elementos críticos.

El rol de América Latina en la transición energética

Al hablar de América Latina y el Caribe (ALyC) se estamos haciendo referencia a un conjunto de países de distintas características tanto de población, económicas o geológicas y es precisamente esta última característica la que condiciona la disponibilidad de cada elemento en el territorio. América Latina es conocida por albergar muchos depósitos de gran tamaño de combustibles fósiles, pero también existen importantes depósitos de minerales metálicos como el cobre, hierro, zinc y plata, entre otros, y esta riqueza mineral es la que ha condicionado y condiciona el desarrollo industrial y la economía de esta región.

Los veinte países de América Latina y el Caribe considerados en este estudio son: Argentina, Bolivia, Brasil, Chile, Colombia, Costa Rica, Cuba, República Dominicana, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Paraguay, Perú, Uruguay y Venezuela.
En la Figura 2 se puede ver la demanda acumulada de distintos materiales, no solo para las energías renovables sino para todos los sectores económicos, además se han tenido en cuenta las reservas de cada mineral a nivel mundial y en ALCyC. Se ha supuesto que, si hay más reservas de cada elemento que demanda acumulada desde 2016 hasta 2050 para ese elemento, se cubre el 100% de la demanda. Las barras azules que van más allá del 100% indican que la demanda acumulada es superior a las reservas y que haría falta más materiales. Esta situación de no poder cubrir la demanda acumulada se da concretamente en el caso del cadmio, cobalto, cromo, cobre, estaño, galio, indio, litio, níquel, plata, teluro y zinc.

Cabe destacar que en el caso de ALCyC hay muchos elementos para los cuales no existen cifras definidas de reservas y que por tanto no están representadas en la figura. Sin embargo, si nos centramos en los elementos para los que sí hay datos de reservas de ALCyC, y teniendo en cuenta solo esas reservas exclusivamente, tan solo se podría cubrir la demanda acumulada de niobio, estando el 98% de las reservas globales conocidas de este elemento en Brasil, que es además el primer productor a nivel mundial copando un 90% de la producción en 2017.13 Por otro lado, aunque no se pudiera cubrir la demanda completa mundial, ALC también cuenta con reservas notables de cobre, estaño, litio, níquel, plata y zinc.

Figura 2. Comparación entre la demanda acumulada por elemento entre 2016 y 2050 para la fabricación de las tecnologías verdes y las reservas mundiales y de América Latina y el Caribe14

Como ya se ha comentado, América Latina es un productor importante de minerales en el mercado globalizado de las commodities. En la Figura 3 se encuentra el porcentaje a nivel mundial de producción de algunos minerales en 20 países de ALyC.

La región es productora principal de algunos metales que se emplean en las tecnologías verdes representados en la Figura 1. Así, por ejemplo, el niobio y el litio son utilizados en la fabricación de coches eléctricos y en sus baterías y, como ya se ha dicho anteriormente, el 98% de las reservas de niobio se encuentran en Brasil. Así mismo, en la actualidad la República Democrática del Congo es el principal productor de coltán, una mezcla de dos minerales, de niobio y de tánntalo, pero existen también algunas reservas probadas en Brasil.

En el caso del litio, aproximadamente la mitad de las reservas mundiales están ubicadas solamente en Chile, aunque Argentina también tiene depósitos de gran relevancia. Algo similar sucede con el caso del cobre; en el año 2017 Chile fue responsable del 27% de la producción de este metal a nivel mundial y cuenta con algo más del 21% de las reservas mundiales, existiendo otros depósitos de importancia en México y Perú.

Figura 3. Producción a nivel mundial de minerales en América Latina y el Caribe (ALyC) en 2016.

Se emplean alrededor de 2 ó 3 onzas de plata en cada panel solar, entre 60 y 85 gramos, y como se puede ver en la figura, en el año 2016, ALyC produjo casi la mitad de la producción mundial de este elemento, siendo México y Perú dos de los más importantes productores.

Aunque en la Figura 3 no se han incluido datos de las tierras raras, sí se sabe que en Brasil existen grandes depósitos que podrían cubrir parte de la demanda y competir con China, que es por ahora el principal productor de este grupo de elementos.

América Latina es la productora principal de algunos metales empleados en las tecnologías verdes, como es el caso del niobio y el litio

Estos datos se pueden comparar además con las exportaciones de América Latina hacia el resto de regiones del mundo, datos que aparecen en toneladas en la Figura 4 para el año 2013. El hierro fue el mineral más exportado en masa, seguido por el aluminio, la sal y el cobre, aunque estos no sean los más críticos porque como ya se ha visto en apartados anteriores, otros minerales de gran importancia económica se extraen principalmente de la zona aunque sus exportaciones en peso son menores, que no menos importantes. Llama la atención que el mayor importador de minerales de América Latina sea Asia, por ejemplo, un 85% del hierro y casi un 78% del cobre fueron a parar allí.

Figura 4. Exportaciones durante el año 2013 desde América Latina hacia otras regiones del mundo (adaptado de Palacios, Calvo, Valero y Valero, 2018a)

Analizando esta información se puede ver por qué América Latina y el Caribe están siempre presentes en todos los informes de criticidad que se han mencionado en el aparta-
do anterior. Así se puede entender mejor por qué la Comisión Europea en su identificación de materiales críticos apunta a México y Brasil como los principales países de suministro de niobio y fluorita.¹⁷ Incluso en el informe llevado a cabo por el Servicio Geológico Británico (BGS) México, Chile y Brasil se identifican en esta lista como una categoría de riesgo de suministro medio de plata, renio y niobio.¹⁸ En el caso de EEUU, un país más cercano geográficamente que la Unión Europea, los estudios de criticidad califican ALyC como una de sus fuentes de abastecimiento estratégicas. Es por ello que en su programa de acumulación de minerales de la Defensa Nacional (National Defense Stockpile Program) en 2015 identificaron el óxido de aluminio y antimonio, suministrados por Venezuela y México, como minerales estratégicos con alto riesgos de suministro.¹⁹ En estos informes se pone en evidencia la importancia de los minerales provenientes de América Latina para la sostenibilidad industrial y económica de otras regiones del mundo.

Por otro lado, aunque ALyC cuente con recursos naturales de un valor incalculable, la región también es la más desigual del mundo y no solo respecto a la distribución de los ingresos, sino también respecto a aspectos éticos y de género.²⁰ Un estudio realizado sobre los flujos de materiales en la región revela que los países que se dedican a actividades mineras poseen menores ganancias económicas producto de la venta de sus recursos naturales.²¹ Es decir, en lugar de que los ingresos económicos provenientes de la venta de minerales en ALyC supongan un medio para promover el desarrollo en la región, estos están mal distribuidos y las desigualdades se hacen cada vez más grandes. Sin ir más lejos, en un estudio recientemente publicado, se demostró que las ganancias económicas producto de la venta de recursos minerales en ALyC durante el año 2013 no compensaron la pérdida de capital mineral en la región.²²

No solo las actividades mineras en ALyC tienen implicaciones de orden político o social, también tienen implicaciones ambientales considerables. El Observatorio de Conflictos Mineros de América Latina (OCMAL) es una organización que se dedica a recoger información acerca de los conflictos ocasionados por las actividades mineras en la región y en su página web se registran más de 240 conflictos en esta zona.²³ De igual manera, en el Atlas

¹⁹ Departamento de Defensa de EEUU, Strategic and critical materials 2015. Informe sobre los requisitos de almacenamiento, 2015.
de Justicia Ambiental se identifican problemas relacionados con la minería en América Latina y el mundo y su número es considerable especialmente en los países de América del Sur. El legado de los “pasivos ambientales” resultado de las actividades mineras es otro problema que se suma a una actividad que cada vez tiene más resistencia en la región.

Conclusiones

Como se ha podido ver, la transición energética va a demandar grandes cantidades de materiales, y en América Latina y el Caribe se encuentran depósitos importantes, por lo que la región tendrá un papel crucial en las próximas décadas como productor y abastecedor de materias para la fabricación de energías renovables. Un caso claro es el del niobio y el litio, ambos necesarios para la fabricación del coche eléctrico y cuya demanda se va a disparar en las próximas décadas. Latinoamérica y el Caribe cuentan con el 98% y casi el 60% de las reservas mundiales respectivamente de cada elemento.

Sin embargo, el rol de la región en la descarbonización de la sociedad para alcanzar el objetivo de la COP21 debería ir mucho más allá de conformarse con un papel secundario de productor de materias primas. En primer lugar, sería necesario darle a estos recursos el valor que realmente tienen desde un punto de vista medioambiental y geológico, dado que, al ser los minerales un recurso no renovable, una vez extraídos la región pierde parte de su capital mineral. En segundo lugar, estos beneficios deberían ser empleados para promover el desarrollo de la región, cambiando el sistema hasta ahora existente que demuestra que estos beneficios están mal distribuidos potenciando cada vez más una sociedad desigual.

La ausencia de políticas claras y de líderes con una visión que promueva un cambio de una actividad meramente extractivista en la región, junto a las presiones geopolíticas, están hipotecando el futuro de los latinoamericanos. Los recursos minerales son limitados y cada vez son más explotados en la región; con estos antecedentes una pregunta surge de manera inevitable: ¿qué sucederá con América Latina y el Caribe cuando se agoten sus recursos naturales?

Agradecimientos

Agradecimientos a la Organización Latinoamericana de Energía (OLADE), en particular a Paola Carrera por facilitar el acceso de información económica y energética de la región. A la Secretaría de Ciencia y Tecnología de Ecuador (SENECYT) por su aporte para la investigación y en publicación de artículos y al Ministerio Economía y empresa de España (proyecto ENE2017-85224-R).
